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Abstract Two numerical examples are presented to illustrate the 
application of the proposed method of parameter estimation in phar- 
macokinetics. Results for a system exemplifying first-order kinetics in- 
dicate that parameters estimated by the proposed procedure compare 
favorably with those estimated by a nonlinear regression method. In a 
simulated example characterized hy Michaelis-Menten elimination ki- 
netics, the accuracy of the estimated parameters was comparable to that 
expected, verifying the validity of the method. The importance of the 
numerical approximation algorithms was demonstrated also. 

Keyphrases Pharmacokinetics-estimation by numerical algorithms 
and multiple linear regression 0 Numerical algorithms-estimation of 
kinetic parameters Multiple linear regression-estimation of kinetic 
parameters Statistics-numerical algorithms, multiple linear regres- 
sion, estimation of kinetic parameters 

A general approach suitable for parameter estimation 
was reported previously (1). The strategy is to obtain 
equivalent mathematical expressions in linear form. 
Briefly, the procedure involves data transformation, 
usually by numerical integration and/or differentiation, 
followed by multiple linear regression. The application of 
this technique in pharmacokinetics is illustrated in the 
present report. 

ESTIMATION PROCEDURE 

Linear Case-Many pharmacokinetic processes are linear, and their 
description can be approximated by multiexponential equations. In a 
two-compartment open model (2,3),  the observed drug concentration 
in the central compartment, C , ,  after intravenous administration can he 
descrihed by: 

(Eq. 1) 

where a,  b, N ,  and /3 are unknown constants and n is the number of ob- 
servationsl. If the elimination is assumed to take place from the central 
compartment only, as depicted in Scheme I, the relationships between 
the four constants and the model parameters become: 

C ,  = a exp(--nt,) + b exp(-Pt,) i = 1,2,. . . , n 

N = 0.5[ (k12 + k21 + klo) + ~ ' ( k l 2  + k 2 I  + &lo) - 4k2lkl"l 

P = 0.5[(k12 + k21 + k l d  - d ( k i 2  + ki i  + kio) - 4kz1k10I 

(Eq. 2) 

(Eq. 3) 

a = D(cw - k p l ) / V ( a  - 0) (Eq. 4) 

1 For simplicity, subscript i is omitted and implied in most of the equations. 

,I& Kin 

K21 
T----rB+l! 

Scheme /- / , inear trw-compartmrnt open model depicting thc body 
as composed of the central compartment R (including blood) and the 
peripheral compartment T, where k l 2  and k l l  are first -order inter- 
compartmental transfrr rate constants, klo  is thr  first-order rlimination 
rate constant, and U is the eliminating compartmcnt. The drug dose 
D is introduced into.thr central compartment a t  zero time. The  drug 
concrntration in thr  central compartmcnt i s  defined as C = HN, Lchere 

V in the o o h m e  of distribution of the central compartmmt .  

b = D(k21 - P)/VCN - 8) 
V = D / ( a  + b )  

(Eq. 5) 

(Eq. 6) 

Ry applying the procedure described earlier ( I )  and recognizing that 
concentration at  time zero is not an observation for a given experiment, 
the biexponential equation can be transformed into the following linear 
expression, which contains four terms: 

4 

I =  1  
C =  A , X ,  (Eq. 7) 

where: 

X q  = s" X:3 dt  
I 

(Eq. 15) 

In deriving Eqs. 8 and 9, the following identities apply: 
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T & B = u  
Kzi 

Scheme II-Nonlinear disposition model obtained by modification of 
Scheme I. Conditions are identical for the two schemes except that the 
elimination is characterized by saturable Michaelis-Menten-type 

kinetics. 

Equation 7 also can be independently derived from the following rate and 
mass-balance equations: 

C = -(kiz + kio)C + (KzI/V)T (Eq. 18a) 

cr = kmVC (Eq. 186) 

D = VC + T + U (Eq. 18c) 

From Eqs. 8-11, where A1 and A:! are simplified to: 

A1 = a exp(-atJ + b exp(-Ptl) 

Az = a P  exp(-cutl) + b u  exp(-Ptl) 

(Eq. 19) 

(Eq. 20) 

the four parameters can be calculated: 

LY = 0.5[-A3 + (A: + 4A4)"*] (Eq. 21) 

(Eq. 22) p = 0.5(-A3 - (A: + 4A4)1'z] 

While four parameters are associated with the biexponential equation, 
only a and pa re  nonlinearly related. The other two constants, a and b, 
are linearly related and can be estimated by linear regression. Thus, the 
procedure is slightly modified so that regression Eq. 7 is used to obtain 
the two nonlinear parameters only. Once they are calculated from Eqs. 
21 and 22, they are then substituted into Eq. 1 to obtain a and b by a 
second linear regression. 

Nonlinear Case-A nonlinear pharmacokinetic model obtained by 
a simple modification of the previous one is shown in Scheme 11. In this 
model, drug elimination from the central compartment is assumed to 
follow Michaelis-Menten kinetics. The rate and mass-balance equations 
are: 

C -k1zC + (kz i /V)T  - (V,/V)C/(K, + C )  (Eq. 250) 

U = V,C/(K, + C) (Eq. 256) 

D = VC + T + U (Eq. 25c) 

where V, is the maximum rate and K, is the Michaelis constant. 
Although closed-form solutions explicit in t to this nonlinear model 

cannot be obtained, numerical solutions can be generated by using 
Runge-Kutta approximations. 

The regression equation describing the time course of the drug con- 
centration in the central compartment is: 

4 

j =  I 
C =  AjXj  (Eq. 26) 

where: 

(Eq. 29) 

(Eq. 30) 

(Eq. 31) 

(Eq. 32) 

(Eq. 33) 

The main difference between the two models is the presence of non- 
linear parameter K,. As descrihed earlier ( l ) ,  the best-fit K, can be 
found by scanning the weighted sum of squared deviations, WSS,  as a 
function of K,. The minimum WSS is then located by iteration. The 
search should be confined to a range of values where K, is numerically 
comparable to the observed C values. Otherwise, the system reduces to 
a linear model with either first-order (K, >> C )  or zero-order (K, << C )  
elimination. 

Numerical Integration-To perform the regression analysis, nu- 
merical methods such as numerical integration and numerical differen- 
tiation are required to generate the necessary X, values. Many numerical 
integrating algorithms, including the well-known trapezoidal rule, can 
be found in the literature (5). In a recent publication, algorithms based 
on Lagrange and spline functions were shown to be relatively free of 
systematic errors (6). 

A slightly modified spline method is employed in the present work to 
minimize spurious oscillations near both ends of the curve. h t h e  original 
procedure (6), the two end conditions are defined as Y2 = Y B  and vn-l 

= Y,. In the modified version, the first condition is amended so that Y1 
= ? i f  Y1 = 0, with the constraint Y1 1 0. The second condition is changed 
to Y ,  = 0; in the event that  Y ,  = 0, an additional constraint of Y ,  = 0 is 
also imposed. These two conditions, except for the constraints, were 
suggested previously (7) .  The modified procedure is especially useful if 
input data contain two or more consecutive zero Y values. 

Numerical Differentiation-Numerical differentiation is required 
to generate the X Z  values in Eq. 32. In contrast to numerical integration, 
which tends to dampen noise, numerical differentiation tends to magnify 
the effect of input errors. If experimental data are of high precision, in- 
terpolating polynomials such as spline functions (6,7) can be used. With 
noisy data, a possible solution is to use smoothing least-squares polyno- 
mials. The procedure is described here. 

T o  obtain derivatives a t  each data point ( t t ,  C l ) ,  the nearest five con- 
tiguous points are taken and fitted with a cubic polynomial, using an 
appropriate weighting scheme: 

C = 0, + b,t + c , t 2  + d,ts (Eq. 35) 

The four coefficients are solved by the standard linear regression tech- 
nique. Once they are obtained, the derivative of Eq. 35 is evaluated a t  
t ,  : 

C, = b, + 2c,t, + 3d,tf (Eq. 36) 

This procedure is repeated successively for each i, i = 3 , 4 , .  . . , n - 2. For 
1 = 1 or 2, the derivative is calculated from the cuhic polynomial fitted 
to the first five points. For I = n - 1, it is calculated from the cubic 
polynomial fitted to the last five points. For i = n ,  it is calculated from 
the following equation, assuming monoexponential decay of C between 
t,-1 and t,: 

C, = C n  In ( C n / C n - l ) / ( t n  - t n - 1 )  (Eq. 37) 

Derivatives obtained in this procedure are less sensitive to the variation 
in the data than those obtained by the spline method. However, since a 
cubic polynomial allows one inflection point and two extrema, approxi- 
mations are usually less accurate if experimental errors are high. 

T o  improve the reliability, a second set of derivatives is calculated by 
repeating the entire procedure, using parabolic polynomials as the fitting 
function. The corresponding fitting polynomials and derivatives are: 

C = a, + b,t + c,L2 (Eq. 38) 

C, = b, + 2c,t, (Eq. 39) 

The Xz values as shown in Eq. 32 are obtained by taking the average of 
the two derivatives calculated from the ahove two series. This procedure 
is called the LEASQ method. 

Weighting Scheme-Since there are diversified analytical techniques 
for obtaining pharmacokinetic data, experimental observations may not 
be homogeneous in variance at all times. These variances should be 
considered when devising a weighting scheme. In general, data are 
weighted in proportion to the inverse of their variances. Excellent dis- 
cussions of data weighting can be found elsewhere (8). 

Accuracy of Parameters-By analogy to a technique commonly used 
in nonlinear regression, the uncertainty asscciated with each estimated 
parameter can be evaluated as follows. If D is a square matrix of the 
weighted sum of cross-products of the approximate partial derivatives, 
then the approximate standard error, ASE, of parameter 8, is: 

ASE(8,)  = dd,, WSS/df (Eq. 40) 
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Table I-Comparison of the Present Results and Those Obtained by the Nonlinear Regression Program COMPT a 
~~ 

Parameter 

~ 

Ref. 10 
Present Resultsb 

Spline Lagrange Trapezoidal 

0.160 
0.345 
0.570 
0.844 
0.235 
7.59 
4.35 

53.94 
11.96 
- 
- 
- 
- 
0.0245 

0.136 
0.247 
0.545 
0.747 (0.115) 
0.180 (0.020) 
7.83 
4.27 

56.32 (16.91) 
7.52 ii4.24j 

56.31 
14.34 

-0.927 
-0.134 

0.0230 

0.145 
0.245 
0.551 
0.764 (0.111) 
0.177 (0.019) 
7.74 
4.27 

57.08 (15.00) 
7.51 (12.65) 

56.61 
14.32 

-0.940 
-0.135 

0.0242 

0.172 
0.454 
0.579 
0.920 (0.220) 
0.286 (0.013) 
7.62 
4.41 

48.23 (21.12) 
17.41 (17.85) 
57.05 
28.23 

-1.206 
-0.263 

0.0283 
~~ ~ ~ 

Dose = 500 mg. * ASE values are given in parentheses. 

Table 11-Tabulation of Time-Dependent Variables, where X3 and X4 Values Were Generated by the Spline Method, for the 
Spectinomycin Data 

1 0.1667 
2 0.3333 
3 0.5 
4 1.0 
5 2.0 
6 4.0 
7 6.0 
8 8.0 

63.3 
50.6 
43.3 
31.0 
18.3 
6.9 
3.05 
1.95 

1.0 
1.0 
1 .o 
1 .o 
1.0 
1.0 
1.0 
1.0 

0 
0.1666 
0.3333 
0.8333 
1.8333 
3.8333 
5.8333 
7.8333 

0 
9.3864 

17.1643 
35.3746 

0 
0.7972 
3.0314 

16.4102 
59.3086 64.8208 
82.5641 210.5057 
91.6509 385.9920 
96.5691 574.4830 

Table Ill-Summary of the Estimated Parameters for  the Nonlinear Model, Using Derivatives Obtained by the Spline Method or by 
the LEASQ Method * 

Error-Free Datab Corrupted Datab 
True 

Parameter Value Spline LEASQ Spline LEASQ Expected 

K,, pg/ml 4.0 4.095 (0.039) 2.192 (0.532) 3.786 (4.430) 2.277 (2.204) 4.0 (4.293) 
V,, mg/hr 40.0 40.592 (0.234) 29.491 (3.672) 38.499 (26.849) 28.774 (14.652) 40.0 (25.742) 
V, liters 10.0 10.003 (0.004) 10.128 (0.118) 8.658 (0.558) 9.459 (0.448) 10.0 (0.453) 
k 12, hr-' 1 .o 0.998 (0.001) 0.966 (0.023) 1.432 (0.214) 1.086 (0.104) 1.0 (0.105) 

0.5 (0.1 25) k21, hr-l 0.5 0.502 (0.001) 0.422 (0.027) 0.557 (0.155) 0.409 (0.096) wss - 1.73 X 1.56 x 10-3 5.57 x 10-2 3.01 X 2.41 X lo-' 

a Dose = 200 mg. ASE values are given in parentheses. 

where d,, is the j th  diagonal element of the inverse matrix E-l and 
is the degree of freedom. By definition, the elements of the matrix D 
are: 

n aC, aC, 
aej ael a,[= W,*-*- j,Z = 1,2, .  . . , p  (Eq. 41) 

where Wi is the weight of Ci, and p is the number of parameters. If A is 
small compared to O j ,  the partial derivatives can be approximated by: 

Table IV-Comparison of Xz Values (Micrograms per  Milliliter 
per Hour) Calculated by the Spline or  the LEASQ Method from 
Simulated Data Containing 10% Random Noise 

t ,h r  Theoretical Spline LEASQ 

0.1 -20.1748 
0.2 -17.4505 
0.5 - 1 1.324 1 
1 .o -5.5902 
1.5 -2.8722 
2.0 -1.6013 
3.0 -0.7330 
4.0 -0.5188 
6.0 -0.3718 
8.0 -0.2695 

10.0 -0.1875 
12.0 -0.1265 
14.0 -0.0838 
16.0 -0.0549 

-30.6219 
-24.6711 
-10.1656 
-4.3048 
-4.1152 
-0.5344 
-1.4030 
-0.5738 
-0.2766 
-0.2699 
-0.1438 
-0.1449 
-0.0717 
-0.0496 

-22.7207 
- 19.2046 
-10.8613 
-5.9614 
-3.2711 
-1.9930 
-1.1104 
-0.6446 
-0.3547 
-0.2428 
-0.1715 
-0.1334 
-0.0887 
-0.0496 

ac, c,(el,. . . , e, t A,. . . ,e,) - ci(el,.  . . , e, - A , .  . . , e,) -= 
86, 2A 

(Eq. 42) 

Equation 42, when applied to multiexponential functions of the form: 

can be simplified to yield: 

(Eq. 43) 

(Eq. 44) 

EXPERIMENTAL 

Computation-A computer program, written in FORTRAN, was 
devoloped to make the necessary computations2. Briefly, the program 
contains several general subroutines to perform the following tasks: re- 
ceive input, compute weights, numerically integrate and differentiate 
by the described procedures, compile matrix elements, compute deter- 
minant, obtain inverse matrix, calculate regression coefficients, solve a 
system of simultaneous linear equations, locate the minimum by qua- 

* Detailed description of the program will be documented elsewhere 
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Table V-Effect of K,,, on WSSand Othe r  Model Parameters  Using Corrupted Data Set and  Xz Values Calculated by the LEASQ 
Method 

K,, u d m l  K12, hr-l K ~ I .  hr-' V, . m e h r  V. liters wss 
1 .o 
1.5 
2.0 
2.5 
3.0 
3.5 
4.0 
4.5 

1.221 
1.172 
1.119 
1.056 
0.969 
0.834 
0.583 

-0.062 

0.248 
0.310 
0.371 
0.442 
0.537 
0.681 
0.945 
1.604 

31.72 
30.83 
29.70 
27.83 
25.03 
21.24 
16.44 - 

4.982 
6.476 
8.233 

10.663 
14.553 
21.836 
38.533 - 

2.046 
0.597 
0.094 
0.070 
0.474 
1.443 
3.332 
- 

dratic approximation, and compute ASE values associated with mul- 
tiexponential equations. In addition, specific subroutines were developed 
to generate numerical solutions to Eqs. 25a-25c and to compute the as- 
sociated ASE values. The value of A was arbitrarily taken to be 

Linear Case-A set of spectinomycin serum data, originally published 
by Wagner et al. (9), was used to demonstrate the estimation procedure 
and to compare the results with those reported in the literature. The same 
data were cited by Pfeffer (10) to illustrate the nonlinear regression 
program COMPT, assuming the model depicted in Scheme I. 

To make the results comparable, the data were weighted by 1/C2 as 
in COMPT. The two-step regression procedure was repeated three times 
to test the effect of the numerical integrating algorithms (6) on the esti- 
mated parameter values. 

In the first run, X S  values were calculated by the log trapezoidal 
method and X 4  values were calculated by the linear trapezoidal method. 
In the second run, both were calculated by the Lagrange method. In the 
third run, both were calculated by the modified spline method. 

Nonlinear Case-Two simulated data sets, one error free and the 
other corrupted with 10% random noise, were generated by the fourth- 
order Runge-Kutta technique to illustrate the iterative nonlinear esti- 
mation procedure. Two numerical differentiation algorithms, the spline 
method and the LEASQ method with weights defined in Eq. 46, were 
employed to generate the X p  values so that the effect of data smoothing 
on parameter estimation could be examined. In all cases, the spline 
method was employed to generate X4 values and data were weighted 
according to Eq. 46, where the sum of weights was equal to the number 
of data points (11): 

o.ooie,. 

W, = (n/Cf)/  5 (l/cf) (Eq. 46) 

The WSS was first scanned as a function of K, in the range of 1-10 
pg/ml, with the constraint that  all model parameters must be positive. 
The more precise location of the best-fit K, was then refined by iteration. 
Convergence was assumed if, in two consecutive iterations, the change 
in K ,  was less than 0.01% by quadratic approximation. A t  each iteration, 
the four linear parameters were calculated from the regression coefficients 
as follows: 

I =  1 

k21 = -&/A3 (Eq. 47) 

k12 = -k21-  1/A2 (Eq. 48) 

V = A2D/(A, J " A d t  - AJkp , )  (Eq. 49) o K , + C  
V m  = VfAd-42)  (Eq. 50) 

where V was further adjusted to yield the lowest WSS value. 

RESULTS AND DISCUSSION 

Linear Case-Table I list,.. the results, including the four intermediate 
regression coefficients defined in Eqs. 8-11, of pharmacokinetic analysis 
for the spectinomycin data. The effect of numerical algorithm is obvious. 
While the estimated parameters and the corresponding ASE values are 
generalty comparable by all three methods, a comparison of the WSS 
values suggests that  the spline method gave the best fit, followed by the 
Lagrange method, and then by the trapezoidal method. These differences 
are related to the algorithm errors associated with the numerical inte- 
gration procedures used. Listed in Table I1 are the X B  and X4 values and 
other time-dependent variables. Plotted in Fig. 1 are the interpolating 
spline functions for C and X3.  Evidently, no spurious oscillations occurred 
with this sample (6). 

For comparison, results of nonlinear regression analysis on the same 
data used by Pfeffer (10) are listed in the second column of Table 1. With 
the exception of V, parameter values by COMPT were intermediate 

between those of the trapezoidal method and those of the Lagrange 
method. On the basis of WSS values. the present method is either com- 
parable to, or slightly better than, the nonlinear regression process, de- 
pending on the numerical integrating algorithm employed. The two-step 
regression procedure improved the fitting by reducing the effect of al- 
gorithm errors, as evidenced by comparing the present results with those 
reported earlier (12), and is applicable to other multiexponential equa- 
tions. In some cases, either the trapezoidal or the Lagrange procedure 
may yield lower WSS values. 

Nonlinear Case-Shown in Table 111 are the parameter values used 
in generating simulated data and the results of analysis in accordance 
with the nonlinear model. When employing collocative splines as the 
numerical differentiation tool, it is apparent that nearly perfect solutions 
were obtained with error-free data as the input. In contrast, solutions 
based on the LEASQ numerical differentiation algorithms were relatively 
poor, suggesting imprudence in trying to improve upon perfection. 

Results for data corrupted with random noise are shown in columns 
4 and 5 of Table 111. On the basis of WSS values, the LEASQ algorithm 
appears to have yielded better solutions. This result is related to the basic 
differences between the two approximating procedures, the LEASQ 
method being more accurate in generating derivatives from data con- 
taining noise. Comparisons of the calculated X 2  values are given in Table 
IV. 

The effect of K, on WSS is exemplified in Table V. Corresponding 
values for other model parameters are also listed. As can be seen, in- 
creasing K, caused the formation of a minimum in WSS. A further in- 
crease in K ,  resulted in the formation of meaningless solutions. 

With noisy data (Table HI), neither algorithm produced solutions that 
were consistently closer to the expected true values. The uncertainty of 
the estimated parameters can be examined by comparing the ASE values 
with those predicted from the expected parameter values (13). The 
proximity of the actual to the predicted errors is a measure of the reli- 

1007 

T, hr 

Figure 1-Spline function interpolation of C to) and X3 (@) for 
spectinomycin data. 
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Table V1-Comparison of the Predicted and Inpu t  Data 

t ,  hr Inputo 
Predicted by 

Splineb LEASQ 
Theoretical 
(Expected) 

0.1 18.68 19.7470 (-4.26) 18.7512 (-0.28) 
0.2 15.92 16.9891 (-5.01) 16.6838 (-3.58) 
0.6 10.82 11.3095 (-3.37) 12.0142 (-8.23) 
1.0 8.38 6.8147 (13.92) 7.5799 (7.12) 
1.5 5.57 5.0242 (7.30) 5.3858 (2.47) 
2.0 4.83 4.2152 (9.49) 4.2544 (8.89) 
3.0 3.51 3.4274 (1.75) 3.2208 (6.14) 
4.0 2.59 2.8980 (-8.86) 2.6901 (-2.88) 
6.0 1.92 2.0464 (-4.91) 1.9381 (-0.70) 
8.0 1.29 1.4026 (-6.51) 1.3608 (-4.09) 

10.0 0.92 0.9385 (-1.50) 0.9294 (-0.76) 
12.0 0.63 0.6176 (1.47) 0.6228 (0.85) 
14.0 0.39 0.4020 (-2.30) 0.4128 (-4.36) 
16.0 0.27 0.2600 (2.77) 0.2721 (-0.59) 

Simulated plasma levels containing 10% random noise. * Weighted residuals are given in parentheses (XI@). 

17.8285 (3.40) 
15.9506 (-0.14) 
11.7020 (-6.08) 
7.6489 (6.50) 
5.6179 (-0.64) 
4.5397 (4.48) 
3.4777 (0.69) 
2.8726 (-8.13) 
1.9997 (-3.10) 
1.3617 (-4.15) 
0.9083 (0.95) 
0.5977 (3.83) 
0.3900 (-0.01) 
0.2533 (4.60) 

ability of the estimated parameters and of the efficiency of the estimation 
procedure. As can be seen in Table 111, the errors associated with either 
the spline or the LEASQ results are in the same range as the expected 
error. Compared to the errors of the LEASQ solutions, the expected ASE 
values were greater hut the expected WSS was smaller. The first obser- 
vation suggests that the true parameters probably are irretrievable from 
corrupted input data. The second observation indicates that further 
improvement of the parameter estimates can be made by applying su- 
perior numerical algorithms. This conclusion is manifested in Table VI 
where the predicted and the observed (input) data are compared. 

Conclusions-Two numerical examples have been described to il- 
lustrate the proposed method in the estimation of pharmacokinetic pa- 
rameters. For a given model and weighting scheme, the reliability of the 
estimates is dependent on data accuracy as well as on the numerical al- 
gorithms employed. Obviously, when experimental errors are large, 
meaningful estimates are difficult, irrespective of algorithmic sophisti- 
cation. 
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Impurities in Drugs 111: Trihexyphenidyl 
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Abstract 0 Two lots of trihexyphenidyl hydrochloride raw material, one 
lot of elixir, and I0 lots of tablets were examined for impurities by TLC. 
Impurities found were l-phenyl-2-propenone, 3-piperidinopropiophe- 
none, and 3-aminopropiophenone. Not all impurities were present in all 
lots, and none exceeded 1.9% of the label drug claim. Impurities were 
identified by mass spectrometry and by comparison of TLC R, values 
and G I L  retention times to those of synthesized specimens of the im- 
purities. 

Keyphrases 0 Trihexyphenidyl-analysis, TLC, impurities in tablets 
and elixir 0 Trihexyphenidyl, derivatives-l-phenyl-2-propenone, 3- 
piperidinopropiophenone, 3-aminopropiophenone, TLC analysis, im- 
purities in tablets and elixir 0 Drug impurities-trihexyphenidyl, tahlets 
and elixir, TLC analysis 

Impurities in drug raw materials and formulations may 
be intermediates or by-products of the synthetic process, 
products of degradation or drug-excipient interaction, or 
the result of contamination. The nature of impurities may 
depend on the synthetic route, the reagent purity, aild the 

excipient quality. To obtain a good perspective of potential 
impurities, raw materials and formulations from as many 
sources as possible should be examined (1-4). This paper 
describes the impurities found in trihexyphenidyl (I) raw 
material and tablet and elixir products. 

Trihexyphenidyl was synthesized first (5) by the addi- 
tion of cyclohexylmagnesium bromide to 3-piperidin- 
opropiophenone (111, obtained by the Mannich reaction 
with acetophenone (III), formaldehyde, and piperidine 
hydrochloride in acidic medium. Trihexyphenidyl hy- 
drochloride raw material and tablets are official in the USP 
(6) and BP as benzhexol(7). An elixir is official in the USP 
only. The only impurity specification is that in the BP for 
3-piperidinopropiophenone in drug raw material. 

EXPERIMENTAL 

Materials-All drugs and formulations were obtained from the 
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